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In this paper, we define a resolution method to study the effect of a porous material on
vibro-acoustic behavior of a geared transmission. A porous plate is coupled with the gear-
box housing cover. The developed model depends on the gearbox characteristic and poro-
elastic parameters of the porous material. To study the acoustic effect of the housing cover,
the acoustic transmission loss is computed by simulating numerically the elastic-porous co-
upled plate model, and the numerical implementation is performed by directly programming
the mixed displacement-pressure formulation. To study the vibration effect, the bearing di-
splacement is computed using a two-stage gear system dynamical model and used as the
gearbox cover excitation. Numerical implementation is performed by direct programming of
the Leclaire formulation.
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1. Introduction

Controlling the vibro-acoustic behavior of rotating machinery has become a quality factor to
improve the comfort by reducing noise and vibration levels. One of the major noise and vibration
sources are geared transmissions (gears, shafts, roller bearings and the housing). The generalized
forces which generate the vibration response of the gearbox housing are multiple, as expressed
by Remond et al. (1993). Sources of vibration excitations generated by geared transmissions can
be divided into two categories, first the internal excitation sources like the static transmission
error under load, elastic deformations of teeth, fluctuation in the frictional force developed by
Houser (1991), Aziz and Seirg (1994), schock phenomenon and the projection or flows of the
lubricant on walls of the housing according to Houser (1991) and Houjoh and Umezawa (1992).
External sources of excitation can be associated with the fluctuations in engine torque and load
inertia.
Regardless of directivity of the source, larger walls of the housing are more flexible and

contribute most to noise radiation. A parametric study performed by Sibe (1997) shows that
the more walls are heavy, stiff and thick, the higher is the acoustic transmission loss of the
housing. An increase in the thickness of the housing is unfortunately contrary to the desire of
manufacturers who always want to increase the specific power of their transmissions. Note that
in the majority of gearboxes, their housings covers are more flexible than other parts body of
the housing and have the largest surface of acoustic radiation while looking for a method how
to decrease their acoustic emission, some research work as that carried out by Guezzen (2004),
confirmed effects of structure of the gearbox cover on noise radiation. In this context, we study
a housing cover of a gearbox coupled with a porous material plate to isolate sources of noise
radiation.
Various models have been developed to describe the acoustic propagation in porous media.

One of the best known and the easiest to implement is the model of Delany and Bazley (1970).
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However, this model is limited because it represents only tested materials and does not express
the phenomenon related to skeleton vibrations. To model more accurately the dissipative effects,
unlike in the model developed by Johnson et al. (1987), one may introduce a function of viscous
form which is not limited by the geometric nature of the skeleton. Modeling of the variation of the
viscous dissipation modulus may require introduction of the viscous characteristic length which
is an intrinsic parameter of the material that can be obtained through experience. Similarly,
Champoux and Allard (1991) defined the thermal characteristic length as an intrinsic parameter
expressing thermal effects. Lafarge et al. (1997) introduced thermal permeability to improve
thermal effects at low frequencies. However, the model with a rigid structure is not suitable
when the skeleton of the material is deformed or mobile: this is the case in many applications
where a porous material is directly subjected to a mechanical or acoustic wave excitation which is
the subject of our paper. Allard (1993) adapted a model for acoustic applications by integrating
various contributions previously cited, see Johnson et al. (1987), Champoux and Allard (1991)
and Lafarge et al. (1997). This model, commonly called the Biot-Allard model is used in our
study since porous materials are subjected to the imposed displacement or acoustic pressure.

In Section 2, we describe equations of motion for the dynamic model of gearbox and the
housing cover (elastic and porous coupled plate) implementing porous models. In Section 3, we
present the resolution method (input and output, geometry, implemented porous and boundary
conditions). In Section 4, we describe the porous plate effect on vibration and the acoustic
transmission loss of our gearbox housing cover by a study case.

2. Gearbox modelling

In most gearboxes, especially those having reduced sizes, the wheel axis is in the same plane
between the two parts of the gearbox (Fig. 1) that enables easy assembling of the wheels.

Fig. 1. Plane configuration of a two-stage gear system and the porous housing cover

We defined a fixed reference frame (O,X0, Y0) in the model. αi are pressure angles of two
gearmesh contact. In this paper, these angles are equal to 20◦ in the case of the gearings with
right teeth.

2.1. Dynamic model of a two-stage gear system

A two-stage gear system is composed of two trains of gearings. Every train links two blocks.
So, the gear system has in total three blocks (j = 1, 2, 3). Every block is supported by a flexible
bearing whose bending stiffness is kxj and the traction compression stiffness is kyj . The dynamic
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model developed has twelve degrees of freedom: six angular movements γji and six linear move-
ments xj and yj (Fig. 2). The motor and receiving wheels are introduced by inertias Im and Ir
as expressed by Miller (1999) with the assumption that we use short shafts. The other spur gears
constitute the gearbox. The gearmeshes are modeled by a linear spring ks(t) (s = 1, 2) along
the lines of action represented in Fig. 2. αi are pressure angles of two gearmesh contact. The
angular displacements of every wheel are noticed by γji with the indices j = 1 to 3 designating
the number of the block, and i = 1, 2 designating the two wheels of each block. Besides, the
linear displacements of the bearing denoted by xj and yj are measured in the plane which is
orthogonal to the axis of wheel rotation.

Fig. 2. Model of the two-stage gear system developed by Walha et al. (2009)

2.2. Modeling of the mesh stiffness

Generally, we can model variation of the gearmesh stiffness ki(t) by a square wave which was
developed by Velex (1988). The variation in stiffness comes from the fact that during meshing
there is a change in the number of contacting pairs. For spur gears, there is a change for two pairs
of teeth in contact for a period of meshing. The square wave variation is the best representative
of the real phenomenon, and is represented in Fig. 3.

Fig. 3. Modeling of the mesh stiffness variation

The gearmesh stiffness variation can be decomposed into two components: an average com-
ponent denoted by kci , and a time-dependent one denoted by kvi(t).

The extreme values of the mesh stiffness are defined by

kmini = −
kc
2εαi

kmaxi = −kmini
2− εαi
εαi − 1

(2.1)

The terms εαi are the contact ratio corresponding to the two gearmesh contacts.
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2.3. Equations of motion

Applying the Lagrange equations, we obtain a system of differential equations governing the
dynamic behavior. It can be written in the following usual matrix form

Mq̈+ [Ks +K(t)]q = F0 (2.2)

where q is the generalized coordinate vector, M is the mass matrix expressed by

M = diag (m1,m1,m2,m2,m3,m3, Im, I12, I21, I22, I31, Ir)

mj is mass of the block j, Im is the polar inertia of the motor wheel, Ir is the polar inertia of
the receiving wheel.

The matrix of average stiffness of the structure is defined by

Ks =

[
Kp 0

0 Kθ

]

Kp =




kx1 0 0 0 0 0
0 ky1 0 0 0 0
0 0 kx2 0 0 0
0 0 0 ky2 0 0
0 0 0 0 kx3 0
0 0 0 0 0 ky3




Kθ =




kθ1 −kθ1 0 0 0 0
−kθ1 kθ1 0 0 0 0
0 0 kθ2 −kθ2 0 0
0 0 −kθ2 kθ2 0 0
0 0 0 0 kθ3 −kθ3
0 0 0 0 −kθ3 kθ3




where Kp is the bearing stiffness matrix and Kθ is the shaft torsional stiffness matrix.

K(t) is the stiffness matrix of the engagement which is variable over time

K(t) =

[
K1(t) K12(t)
KT12(t) K2(t)

]

where

K1(t) =




k1s
2
1 −k1sc1 −k1s

2
1 k1sc1 0 0

−k1sc1 k1c
2
1 k1sc1 −k1c

2
1 0 0

−k1s
2
1 k1sc1 k1s

2
1 + k2s

2
2 −k1sc1 − k2sc2 −k2s

2
2 k2sc2

k1sc1 −k1c
2
1 −k1sc1 − k2sc2 k1c

2
1 + k2c

2
2 k2sc2 −k2c

2
2

0 0 −k2s
2
2 k2sc2 k2s

2
2 −k2sc2

0 0 k2sc2 −k2c
2
2 −k2sc2 k2c

2
2




K12(t) =




0 −k1rb12s1 −k1rb21s1 k1sc1 0 0
0 k1rb12c1 k1rb21c1 −k1c

2
1 0 0

0 k1rb12s1 k1rb12s1 −k1sc1 − k2sc2 −k2s
2
2 k2sc2

0 −k1rb12c1 −k1sc1 − k2sc2 k1c
2
1 + k2c

2
2 k2sc2 −k2c

2
2

0 0 −k2s
2
2 k2sc2 k2s

2
2 −k2sc2

0 0 k2sc2 −k2c
2
2 −k2sc2 k2c

2
2
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K2(t) =




0 0 0 0 0 0
0 k1r

2
b12 k1rb12rb21 0 0 0

0 k1rb12rb21 k1r
2
b21 0 −k2s

2
2 0

0 0 0 k2r
2
b22 k2rb22rb31 0

0 0 0 k2rb22rb31 k2r
2
b31 0

0 0 0 0 0 0




where rb is the base radius; si, sci and c
2
i are simplifications of the functions: si = sin

2 φi,
sci = sinφi cosφi and c

2
i = cos

2 φi, respectively. F0 is the vector of external static forces and
can be expressed as

F0 = [0, 0, 0, 0, 0, 0, Cm , 0, 0, 0, 0,−Cr ]
T

Cm and Cr are the motor and receiving wheel torques, respectively.

3. Modelling of the housing cover

In our study, the housing cover is modeled as an elastic and porous coupled plate. In fact, two
porous models are implemented.

3.1. Leclaire’s formulation

Leclaire’s formulation is based on the classical theory of homogeneous plates and on the Biot
stress-strain relations in an isotropic porous medium with a uniform porosity. The vibrations of
a rectangular porous plate can be described by two coupled dynamic equations of equilibrium
relating the plate deflection ws and the fluid/solid relative displacement w.

In the case of a plate with thickness h and subjected to a load q, these two equations can be
expressed as

(
D +
φ2λ̃fh3

12φ2

)
∇4ws + h(ρ1ẅs + ρ0ẅ) = q

λ̃fh

φ
∇2ws − h(ρ0ẅs +mẅ) = 0

(3.1)

where D is the flexural rigidity, ρ0 – density of the fluid, ρ1 – density of the frame, φ – porosity,
λ̃f – material expansion coefficient and m is the mass parameter introduced by Biot (1962) given
by

m(ω) =
τ(ω)

φ
ρ0 (3.2)

where ω is the pulsation, τ(ω) is the dynamic tortuosity expressed as folows

τ(ω) = τ∞ − j
σφ

ρ0
F (ω)

√

1 +
4ηα2

∞
ρ0

σ2Λ2φ2
jω F (ω) =

√

1− i
4τ2
∞
κ2ρ0ω

ηΛ2φ2
(3.3)

where F (ω) is the viscosity correction function introduced by Johnson et al. (1987), α∞ is the
tortuosity of pores, η is the damping coefficient, Λ is the characteristic dimension of pores, σ is
the flow resistivity.
The space derivatives are written with the help of the operators ∇4 = ∇2(∇2) and

∇2 = ∂2/prtx2 + ∂2/∂y2 of the system of co-ordinates (x, y) while the double dots denote
the second time derivative.
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In the first equation of equilibrium (or plate equation) [D+ φ2λ̃fh3/(12φ2)]∇4ws represents
the internal potential force (per unit surface) within the fluid-saturated plate, while the inertia
terms hρ1ẅs and hρ0ẅ and the load q are considered as external forces. Similarly, the inter-
nal force associated with the fluid-solid relative displacement may be defined, and is given by
(λ̃fh/φ)∇2ws while the external forces can be taken as hmẅ and hρ0ẅs.

We note that the Leclaire formulation is a 2D one and the unknown variables are ws and w.
All terms used in this formulation are based on poroelastic material characteristics.

3.2. The mixed formulation

In order to reduce the computation time enlarged by complexity of the problem, mixed
formulations (u, p) have been implemented. This formulation was developed by Atalla et al.
(1998) using the classical equations of Biot where u represents displacement field of the solid
phase and p is the pore pressure. Replacing the displacement of the fluid phase by its pressure
allows us to reduce degrees of freedom from 6 to 4 per node, valid only for harmonic motion. It
is also accurate in the classical formulation (u,U). The modified equations of equilibrium (for
small harmonic oscillations) are expressed as follows

σ̂sij/jS + ω
2ρ̃ui + γ̃p/i = 0 − ω2

ρ̃22γ̃

φ2
ui/i + ω

2 ρ̃22

λ̃f
p+ p/ii = 0 (3.4)

where σ̂sij is the stress tensor of the material “in vacuo” (does not depend on the fluid phase).
It is written by

σ̂sij =
ˆ̃
λsεskkδij + 2µ

sεsij εsij =
1

2
(ui/j + uj/i) (3.5)

where εsij is the strain tensor of the skeleton, µ
s is the shear modulus of the porous material.

The above equations depend on certain factors:
ˆ̃
λs, ρ̃, γ̃ and λ̃f . These are based on intrin-

sic poroelastic characteristics introduced by Horoshenkov and Swift (2001) and Umnova et al.
(2001).

4. Resolution method

Fig. 4. SADT diagram

For the two cases of study (acoustic and vibration behavior), the implemented porous models
are analysed by the finite element software COMSOL and MATLAB. The equations of motion
are introduced by the EDP module of COMSOL software.
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4.1. Porous models

In COMSOL, the general form of PDE (for a temporal analysis) must be expressed in the
following matrix form

Γ · ∇ = F (4.1)

where Γ is the matrix of the flux vectors and F is the right part of the vector. In Cartesian
coordinates, the gradient/divergence operator vector ∇ is defined as follows

∇ =




∂

∂x
∂

∂y


 (4.2)

4.1.1. Leclaire’s formulation

If we adapt Leclaire’s formulation, Eqs. (3.1), to the EDP form in COMSOL, we obtain the
following equations

Γ =




∂z

∂x

∂z

∂y
∂ws
∂x

∂ws
∂y

∂w

∂x

∂w

∂y




F =




1

D + α2Mh3/12

(
q + hω2(ρws + ρfw)

)

1

αMh

(
∆P − hω2(ρfws +mw)

)

z




(4.3)

4.1.2. The mixed formulation

If we adapt „the mixed formulation”, equations (3.4),to the EDP form of COMSOL, we
obtain the following equations

Γ =

[
Γij
Γ4i

]
=

[
µS(ui/j + uj/i) + λ̃

Suk/kδij
p/i

]
F =

[
Fi
F4

]
=



−ω2ρeui − γp/i

−ω2
ρ̃22

λ̃f
p+ ω2

ρ̃22γ̃

φ2
ui/i




(4.4)

4.2. Geometry

The geometry of the structure used in the numerical simulation is represented by a coupled
porous plate (Fig. 5) with dimensions a = b. Thickness of the porous plate is hp, of the elastic
plate hs. The system is loaded by the imposed displacement.

4.3. Input parameters

The input parameters are the gear system parameters: motor torque Cm and speed Nm,
bearing and shaft stiffnesses kxs, kys, kθs, teeth number, width and module Z, b, m, average
mesh stiffness kc1, contact ratio εα1, pressure angle α and 9 poroelastic parameters: porosity φ,
tortuosity α∞, flow resistivity σ, thermal and viscous characteristic dimensions of pores, modulus
of elasticity Λ and Λ′, density of the skeleton ρ1, skeleton Poisson’s coefficient ν, damping
coefficient η and the skeleton elasticity modulus E.
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Fig. 5. System of co-ordinates in the plate

4.4. Output parameters

The first output is the normal incidence transmission loss TL, as introduced by Rossing
(2007)

TL = 10 log
1

|Ta|2
(4.5)

where |Ta|
2 is the normal incidence power transmission coefficient for an anechoically-terminated

sample, that is the ratio of the sound power transmitted by the sample to the sound power
incident on the sample. In the case of perfectly anechoic termination Ta = C/A

A =
j(P1e

jkx2 − P2e
jkx1)

2 sin[k(x1 − x2)]
C =
j(P3e

jkx4 − P4e
jkx3)

2 sin[k(x3 − x4)]
(4.6)

with P1 to P4 are complex sound pressures at x1 to x4, and k is the wave number.
The second output is the bearing block load

Fb = Kx3x3 +Ky3y3 (4.7)

x and y are bearing displacements, K is the bearing stiffness and Fb is the bearing block load.

4.5. Boundary conditions

The boundary conditions for EDP in COMSOL in their general form are as follows

0 = R − Γn = G+
[∂R
∂u

]T
µ (4.8)

The vector R and matrix Γ may be functions of the spatial co-ordinates with n being the normal
unit vector leaving the boundary surface. These are the boundary conditions of Dirichlet and
Neumann, respectively. The term µ in the Neumann boundary conditions is synonymous with
the Lagrange multiplier.
There are several boundary conditions to be respected since there are two clamped coupled

plates with four sides and poroelastic/acoustic as well as poroelastic/elastic coupling zones.
Using the Biot-Allard formulation, the boundary conditions are discussed below.
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• Imposed pressure field

The imposed pressure field p on the boundary of the porous medium allows us to write the
following relations

σtijnj = −pni p = p (4.9)

which express the continuity of the total normal stress and continuity of pressure across the
interface of the border. The total stress is equal to

σtij = σ
S
ij + σ

f
ij = σ

S
ij − φpδij = σ̂

S
ij − φ

(
1 +
λ̃fS

λ̃f

)
pδij

= µS(ui/j + uj/i) + λ̃
Suk/kδij − φ

(
1 +
λ̃fS

λ̃f

)
pδij

(4.10)

Using the second boundary condition of Eq. (4.9), the first one can be expressed as follows

−[µS(ui/j + uj/i) + λ̃
Suk/kδij ]nj =

[
1− φ

(
1 +
λ̃fS

λ̃f

)]
pni (4.11)

After identification, the terms R and G are as follows

R =

[
Ri
R4

]
=

[
0
p− p

]
G =

[
Gi
G4

]
=



[
1− φ

(
1 +
λ̃fS

λ̃f

)]
pni

0


 (4.12)

When a portion of the surface of the porous medium is coupled to an infinite acoustic medium,
the condition of a free edge can be applied. This is assuming that p = 0.

• Imposed displacement field

In the case of the imposed displacement field ui, the boundary conditions can be expressed by

ui = ui vini − uini = 0 (4.13)

The first term in Eq. (4.13) expresses the continuity between the imposed displacements and
the solid phase displacements, while the second term describes the continuity of the normal
displacement between the fluid and solid phase. In this second condition, it is necessary to
replace the displacement of the fluid phase by the fluid pressure

vi =
φ

ω2ρ̃22
p/i −

ρ̃12
ρ̃22
ui (4.14)

which yields

p/ini =
ω2

φ
(ρ̃12 + ρ̃22)uini (4.15)

such as

ω2

φ
(ρ̃12 + ρ̃22) =

ω2

φ
(ρ12 + ρ22) = ω

2ρ0 (4.16)

After identification, the terms R and G are as follows

Ri = ui − ui R4 = 0

Gi = 0 G4 = −
ω2

φ
(ρ̃12 + ρ̃22)uini

(4.17)

Applying that ui = 0 implies the fact that our porous domain is embedded to a rigid wall.
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• Acoustic – poroelastic coupling

In this case, the equations for continuity of the total normal stresses, acoustic pressure and fluid
flow are as follows

σtijnj = −p
anj p = pa

(1 − φ)uini + φvini =
1

ρ0ω2
∇pani

(4.18)

where pa is pressure in the acoustic medium, ρ0 its density and σ
t the total stress tensor in the

poroelastic material. The vectors G and R will have the following components

Ri = 0 R4 = p− p
a

Gi =
[
1− φ

(
1 +
λ̃fS

λ̃f

)]
pani G4 = 0

(4.19)

In addition, the continuity of the fluid flow at the coupling interface can be expressed as an
imposed acceleration on the fluid in the acoustic environment. Replacing vi by its expression,
the normal acceleration can be obtained by

1

ρ0
∇pani = ω

2
[
uini
(
1− φ

(
1 +
ρ̃12
ρ̃22

))]
+ ω2

[
∇pni

( φ2

ω2ρ̃22

)]
(4.20)

For the Leclaire formulaion, a boundary condition can be considered. It is discussed below

• Clamped plate

At the boundary conditions, an embedding condition is introcuced

ws = 0 Uf = 0 (4.21)

The relative solid-fluid displacement is defined as follows

w = φ
(
Uf − ws) Uf =

1

φ
w + ws (4.22)

where ws is the solid displacement and Uf is the fluid displacement.

Subsequently, R and G are expressed by

R =




ws
1

φ
w + ws

0


 G =



0
0
0


 (4.23)

The loading conditions q and ∆P are fixed according to the type of solicitation (pressure,
force,...). For the surface pressure, a value of 0.1 is assumed

∆P = q = 0.1 bars (4.24)

5. Study case

The numerical parameters of the two-stage gear system are summarized in Table 1.

Table 3 describes numerical values of parameters of the poroelastic materials.
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Table 1. Geared transmission parameters

External inputs Motor torque and speed Cm = 1000Nm, Nm = 3000 tr/mn

Structure
Bearing and shaft stiffness

xs = kys = 10
9N/m,

characteristics kθs = 10
5Nm/rad

Gear characteristics material: 42CrMo4, ρ = 7860 kg/m3

First stage Second stage

Teeth width and module [mm] b = 20, m = 4 b = 20, m = 4

Teeth number Z(12) = 26, Z(21) = 39 Z(12) = 26, Z(21) = 39

Average mesh stiffness kc1 = 1.4 · 10
8N/m kc2 = 1.4 · 10

8N/m

Contact ratio and pressure angle εα1 = 1.57, α = 20
◦ εα2 = 1.53, α = 20

◦

Table 2. First eigenfrequency of the geared transmission

ωi [rad] 1823 4095 6016 16063 17353 27365

fi [Hz] 290 652 957 2557 2763 4357

Table 3. Poroelastic parameters for validation of the models

Parameter Unity Porous material

ρ1 kg/m3 90

φ – 0.7

σ Ns/m4 22250

α∞ – 1.3

ν – 0.05

Λ µm 75

Λ′ µm 87

E N/m2 2980000

η – 0.12

5.1. Porous plate effect on vibration level

Figure 6 shows the displacement along the axis x of the output bearing at the housing cover.
The displacement amplitude is about 2 ·10−6. The periodicity of the bearing displacement comes
from domination of the gearmesh frequency.

Figure 7 shows that the RMS bearing displacement increases with the meshing frequency as
it is shown in Fig. 8. The results show that the gearmesh frequency and its harmonics dominate
the RMS bearing displacement with higher amplitudes when the gearmesh frequency or one of
its harmonics is close to the eigenfrequency. The first peak is close to the first eigenfrequency
(290Hz) the second one is close to the third eigenfrequency (957Hz). The third peak is close to
the sum of the first and the third eigenfrequency (1608 Hz).

Figure 9 shows that the gearmesh frequency and its harmonics dominate the point plate
displacement. The absence of a negative displacement is due to the elastic effect of the plate
at the measurement point. Due to the same reason, there are no positive displacements in the
other half of the plate.

As it is shown in Fig. 10, the gearmesh frequency dominates the point plate displacement.
The absence of a negative displacement is due to the elastic effect of the plate at the measurement
point. Due to the same cause, there are no positive displacements in the other half of the plate.
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Fig. 6. Output bearing displacement in the x direction

Fig. 7. Output bearing displacement in the x direction for three gearmesh frequencies

Fig. 8. RMS bearing displacement
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Fig. 9. Displacement along the axis x at a point with coordinates (0.15, 0.24) on the elastic plate

Fig. 10. Point displacements (solid line: elastic plate, dashed: elastic and porous coupled plate)

5.2. Acoustic effect of the porous plate

Figure 11 shows the transmission loss TL of the elastic-porous coupled plate. The calculation
is conducted for the porous plate with a characteristic defined in Table 3 and thickness 10mm.
TL increases along the frequency axis and is dominated by the resonance frequency of the plate
where TL decreases with the frequency converging to 67 dB, 54 dB and 83 dB at, respectively,
natural frequencies 620Hz, 1240Hz and 1900Hz. Figure 11 shows the dependence of the sound
transmission loss on the flow resistivity which is one of the characteristic of the porous material
but is still dominated by the natural frequencies.

6. Conclusion

A resolution method to determine the porous plate effect on a gearbox hosing cover is discusseg
in the paper. The developed model depends on several parameters: gearbox and porous plates
parameters. It is found that coupling of the porous plate to the housing cover reduces the
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Fig. 11. Sound transmission loss TL for different flow resistivity σ

vibration level and is dominated by the gearmesh frequency. For the acoustic effect, poroelastic
materials have major capacity to mitigate the noise level caused by the geared transmission.
The vibration and the acoustic behavior are heavily dependent on poroelastic characteristics.
These results were validated by Tewes (2005), who computed the transmission loss of an infinite
double wall partition for various angles of incidence and for various mass ratios. The developed
method helps one to make decisions in the robust design and lessens the enormous computing
time.
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